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For infrequent-event systems, transition state th€®8T) is a powerful approach for overcoming

the time scale limitations of the molecular dynamistD) simulation method, provided one knows

the locations of the potential-energy basistate$ and the TST dividing surface®r the saddle

points between them. Often, however, the states to which the system will evolve are not known in
advance. We present a new, TST-based method for extending the MD time scale that does not
require advanced knowledge of the states of the system or the transition states that separate them.
The potential is augmented by a bias potential, designed to raise the energy in mgeniban at

the dividing surfaces. State to state evolution on the biased potential occurs in the proper sequence,
but at an accelerated rate with a nonlinear time scale. Time is no longer an independent variable, but
becomes a statistically estimated property that converges to the exact result at long times. The
long-time dynamical behavior is exact if there are no TST-violating correlated dynamical events,
and appears to be a good approximation even when this condition is not met. We show that for
strongly coupled(i.e., solid state systems, appropriate bias potentials can be constructed from
properties of the Hessian matrix. This new “hyper-MD”" method is demonstrated on two model
potentials and for the diffusion of a Ni atom on a(Nd0) terrace for a duration of 22s. © 1997
American Institute of Physic§S0021-96007)50211-X]

I. INTRODUCTION carefully, so as to minimize these correlated dynamical ef-
] ] ) . fects(e.g., by placing it at the saddle surfacthe TST rate

The molecular dynamicVD) simulation method is & constant is often an extremely good approximation to the
powerful and widely used tool. A long-standing problem, y,e rate for strongly couple.g., solid statesystems. This

however, is that its utility is limited to processes that OCCUra et along with the conceptual simplicity and accuracy of
on a time scale of nanoseconds or less. While recent inNovag . harmonic approximation to TSt has led to the wide-

tions in parallel computing hardware have dramatically in-S read use of TST for problems in the solid state. Properly

creased the number of atoms that can be simulated, they ha);ll plied, the errors due to the harmonic approximation and

had little |mpact on the time s_cales a(_:cessmle to MD,_duet ny missing correlated dynamics are usually substantially

the sequential nature of the integration of the equations o . . . )
. . .~ “smaller than the errors associated with the approximate in-

motion. Consequently, many processes of interest remain o . : . . .

of reach eratomic potential. The dynamical evolution of infrequent-

event systems can thus be viewed, justifiably, as a sequence

For many systems, the dynamics can be characterized a? uncorrelated passages from state to state via saddle points
a sequence of infrequent transitions from one potential basifl P 9 P

(“state™) to another. In these cases, longer time scales cafi" the potential surche. . L
be accessed using transition state the@$T), an elegant However, the utility of TST in treating infrequent-event
dynamics has always rested on two crucial assumptions; that

approach with a long history® In TST, one takes the tran- _ ,
sition rate between states as the flux through a dividing sur@n€ knows in advance what the different states of the system

face separating the states. This flux is an equilibrium propWill P&, and that one can construct reasonable dividing sur-
erty of the system, and so does not require that actudpces along the boundaries between these states_, or can find
dynamics be performed. TST assumes that each crossing 8fddle points. Often, however, the understanding of the
the dividing surface corresponds to a true reactive event, igtates to which a system will evolve is incomplete. Indeed,
which the system passes from one state to another and th&§termining the future configurations may be the primary
loses all memory of this transition before the next event. Inmotivation for the atomistic simulation. Perhaps worse, pre-
actuality, some surface crossings can be dynamically corsumptions about how the system will evolve may be incor-
nected, i.e., if the time between two successive crossingiect, so that important pathways are overlooked. For ex-
does not exceed the correlation time of the system. Becaugdnple, the substrate-exchange mechanism for adatom
of this correlated dynamical behavior the TST rate constangiffusion on fc¢100 surfaces, which was unknowand un-

is only approximate, but the exact rate can be recovered bgxpectediuntil 1990} is now understood to be the dominant
computing a dynamical correction factor from short-durationsurface transport mechanism for some transition métafs.
trajectories initiated at the dividing surfate, as first dem- This has forced a re-examination of models of surface dy-
onstrated by Kec¥ in the gas phase and Benrféfior con-  namics based on simple hopping events. Other, more com-
densed phase systems. If the TST dividing surface is chosgslicated events can also occur on surfaces, involving the con-
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4666 Arthur F. Voter: Simulation of infrequent events

certed motion of dozens of atorhSTheir unexpected and 1l. THEORY
complex nature virtually guarantees they will be omitted 5 accelerated dynamics in a biased potential
from lattice-based, kinetic Monte Carlo simulations, which

are typically basedimplicitly or explicitly) on a catalog of Consider a system df atoms, evolving according to the
TST rate constani® classical equations of motion, characterized at any tirbg

In this paper we take a new approach to the infrequentf(t) andp(t), the N-dimensional vectors for the atom po-

event problem. We present a method for extending the timéItlons and momenta, respectively. The system resides ini-

: . . . tially in a basin of the potential energy functiovi(r), that
scale of a molecular dynamics simulation without any ad- . .. ’
y Y 8% e Will call stateA. In the transition state theo§fT ST) ap-

vanced knowledge of either the dividing surfaces or the N :
oximation, the unimolecular rate constant for escape from

: . . pr
states through which the system may evolve. First, appealln&is staté® is given by the flux exiting through the boundary
to the general TST expression, we show that it is possible 9 state A (the 3N—1-dimensional surface that separates
modify the potential energy surface in such a way that &tateA from other states

molecular dynamics simulation on this modified surface ex-
hibits the correct relative probabilities for escape from any kx> =(|val a(r))a. 1)

state of the system to the various adjacent states, but wit|lj| 8,(r) is a Dirac delta funct itioned at the bound
enhanced overall escape rates. The time scale for the evol[j£7€ 2alr) 1S @ Lirac defla function positioned at the bound-

. . . ry to stateA anduv , is the velocity normal to this boundary
tion of the system can only be known in a coarse-graine . . :

. ) . - surface. These are defined Wa(r), a continuous, differen-
sense, but a statistical estimate of the elapsed time is eas

¥ble function chosen to have the propert
accumulated as the simulation evolves. The long-time dy- property

namics in this type of simulation are exact to the extent that >0 if r is in state A
the dynamical corrections to TST are negligible. We then Fa(r){ =0 if r is on the boundary to statd (2)
show that the requirement on the modified potential, that it <0 if r is outside of stateA.

match the original potential at the TST dividing surfaces, can ) _
be met to a good approximation using only local properties "€ 0ccupation function

of the _HeSS|an matrix, with no advange knqwledge of the @ ,(nN=0F(] 3
states in the system. In Sec. Ill A, we investigate the prop- _ o _

erties of this “hyper-MD"” method for one-dimensional dif- IS Unity when the system is in stafe and zero otherwisgd
fusion of a particle in a simple two-dimensional potential.is the standard step function, while occupation functions will
The viability of the method for more complex, realistic sys- be indicated by capita®), so that its spatial derivative gives

tems is then demonstrated in Sec. Il B in a simulation ofth€ desired delta function,

adatom diffusiop on a small MOO) terrace for tens qf mi- . SA(1)=VOA(N) = S[Fa(N)]|VFa(r)], (4)
croseconds, a time scale that is generally inaccessible using o
direct MD on present-day computers. and the normal velocity is

The hyper-MD method should be most appropriate for VE -

processes in the solid state, where atoms are strongly v,=-— W
coupled together. Examples include surface and bulk diffu- A
sion, overlayer growth, annealing of ion-implant damageswhere r=dr/dt. We will only consider the canonical en-
and low-strain-rate propagation of a crack tip. In its presensemble, for which averages such as in Bg.are defined by
form, it is not suitable for accelerating dynamics in the liquid the usual ratio of 8l-dimensional phase-space integrals,
phase. First is the assumption that TST is a good approxima ) IP(r.p)e—FKPe-AVOdrdp

®

tion, which is often not the case for reactions in solutidn. - ;
Second, the existence of negative eigenvalues of the Hessian, J e PXPe AVNdrdp

typically abundant in the liquid state, obscure the identifica- _ - :

tion of the saddle points for the reaction coordinate. For':_é?rzzfrattﬂr(;;n%(?(l(?))ﬂ;: Eloeltiriuz:\iz er;ga;g&r?/l;n:r;e

these same reasons, the method may not be useful for solighcrem. is the mass of the atom associated with coordinate
. . . i

state systems with significantly floppy modes, such as o[ The subscripa on the average in Eql) indicates restric-

certain molecular adsorb_ates. tion to the configuration space of stad@(P),=(P® (r))].

This method compliments other recently developedye note tha®,(r) cuts s,(r) in half, eliminating the factor
approache®~?*for extending the atomistic simulation time of 1/2 that sometimes appears in the definitionk&?" to
scale, and might be usefully combined with them. For sySgccount for outgoing flux only.
tems with a natural disparity in vibrational frequencies, Because the kinetic energy is separable, the momentum
Tuckerman, Martyna, and Berife have developed a dependence in Eql) can be integrated out analytically if
multiple-time-step integration algorithm, and f@bech- the effective mass of the reaction coordinate is constant over
Jensen and Doniathand Mathiowetzet al?* have pre- the TST surfacéi.e., if the surface is planar or all the atomic
sented methods for accelerating protein-folding dynamics bynasses are equivalentn the present treatment, we keep the
eliminating the fast vibrational modes completely. full phase-space average to allow for arbitrarily curved TST

(6)
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surface$® and to allow for the possibility of a surface defi- surface, one can use E€) to obtain the TST escape rate

nition that depends on bothandp, although we only con- from stateA, an equilibrium property of the system, using

siderr-based definitions. either Monte Carlo or MD. We now begin a different tack,
Now consider adding t¥(r) a continuous, non-negative exploiting Eq.(9) to formulate a dynamical method that does

bias (or “boost”) potential, AV,(r), designed so that not depend on knowledge of the dividing surface nor on

AV, (r)=0 whereda(r)#0, i.e., the potential is unaffected at complete sampling of the reactant state. The primary goal

the transition state region. A schematic example is shown iwill not be to compute rate constants per(athough in the

Fig. 1. Deferring until Sec. Il B the discussion of how to examples in Sec. Ill, rates are determined to demonstrate the

constructAV,(r), we manipulate Eq(1) to obtain accuracy and viability of the methfycbut rather to devise an

F I 1o Al SA(1) O A1) B P~ AV(grdp algorithm that is capable of advancing a system from state to

TST_ i i i i i

kpsT= [ e PRI A1 dp :?;tﬁlarggﬁ.h more rapidly than is possible with direct MD
Assume that we have a system for which TST is exact,
TTval Sa(r) @ p(r)e AKPIg= AIVIN+AVL(NI+BAVK(INdrdp  i.e., any crossing of the TST dividing surface corresponds to
- [ [e~PKPe=AVNgrdp a true reactive event and the crossing is not dynamically
correlated with any past or future crossing event. Further,

(Jval Sa(r) POy assume that modifyiny/(r) with the bias potential does not
= <e,8AVb(r)>Ab ' @) affect this lack of dynamical connectivity, so that TST is

exact for this biased potential. Finally, assume th¥({,(r) is
where the subscripd, indicates an ensemble average takenchosen such that it does not block any escape paths, nor
on the biased potential surfat#r)+AV,(r) within stateA, introduce any new, significant wells into the system; i.e., any
~ BK(p) a— BIV(1) + AV (1)] subminima within staté\, have escape times substantially
(P)a,= ffP(r,p)@_,;(}:()p)e —B[V(3+Av i i drdp; shorter than the escape timefy) for stateA. We now con-
® Ile e o drdp sider the dynamical properties of the biased-potential system.
(8) The biasing potential enhances the TST escape rate be-
i.e., we define staté,, as stateA with the biasing potential cause theA, well is not as deep as th& well [AV(r) is
turned on. Becaus@V(r)=0 whereverd,(r)#0, the nu- everywhere non-negatiyeAlso, because\V,(r) does not
merator in the last line of Eq7) simplifies, leaving affect any part of the TST surface, the ratios of the TST
(|0al 34(1)) escape rates to each of the states adjacent to Atadee
TsT_CAITAY A (9) Preserved. This is because the expression for the TST escape
A— <eBAVb(r)>Ab '

rate to any particular adjacent staig., kXiTB) has as its

denominator the partition function for state Replacing this
denominator with the partition function for stafg, leaves
intact the ratio of escape rates to any two different adjacent
states(e.g.,B andC),

The numerator in Eq(9) is simply the TST rate of escape
from stateA,, while the denominator is equivalent to the
ratio of partition functions for state& andA,,.

The derivation to this point is essentially standard impor-

tance sampling’~3! Knowing the location of the dividing KIST - KIST
A—B b
KIST = jTsT - (10
A—C Ab—>C

This is a crucial property, with the consequence that if we
run a trajectory” on the biased potential surface, we will
observe accelerated escape to an appropriate adjacent state,
B. Because we have specified that the system obeys TST,
this trajectory will thermalize in statB. If, in turn, stateB

has a biasing potential, the system will again exhibit accel-
\ erated escape to a state adjacentBBtoand so on.At an

N s accelerated pace, the system evolves from state to state in a
sequence representative of the exact dynanfidsat is, the
probability of any given sequence, e.\-B-A-C-D-

E..., is exactly the same for the biased dynamics as for the
exact dynamic$.We now ask whether a time scale can be
assigned to this accelerated dynamical evolution. In fact,
such a time scale is easy to define, provided that we only
FIG. 1. Schematic illustration of a one-dimensional potentidsolid line) require that it be meaningful in a long-time or coarse-grained
defining stateA, and the biased potentid+ AV, (dashed ling which sense.

defines staté\, . The potentials are equivalent at the TST boundd(iei- Consider a thought experiment in which we evaluate the
cated by vertical lines so the relative probability of escape to the left vs

right is the same for both states, although the escape rates are enhanced ®¥erages in Eq(9) l_JSing molecular dynamics V\_/ithin S.tate
stateA,, . A, . Rather than using many short, microcanonical trajecto-

potential energy
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4668 Arthur F. Voter: Simulation of infrequent events

ries sampled from the canonical ensemble, we instead ugéhe speed improvement compared to direct MD, ignoring
one long trajectory. By coupling this trajectory, at leastthe extra cost of evaluating the bias potenteas
weakly, to a heat batke.g., using one of the modern ther- )
i tot

nmoonsizz;tlmethodswe gu_arantee that over t|m_e the proper ca- t_b:<e/3AVb<r>>: i S ePAVulr(t)] 15

phase space is sampled. By making the trajectory tvo Neot (=1
extremely long, the averages can be computed to arbitrarily
high accuracy. A reflecting barri€ralong the TST dividing This accelerated dynamical approach, which we term hy-
surface contains the trajectory within stétgand provides a perdynamics or hyper-MD, transforms the problem into one
count of the the number of TST surface collisions, or escapgyhere the dynamical evolution from state to state is correct,
attempts(nesg. Inverting Eq.(9) gives an expression for the put the time scale is distorted, sometimes running too fast
average time required for escape from stAtewhich is  and other times too slow, relative to the average accelerated
evaluated from the trajectory results as pace. At long times, the many bad estimates of the short-time
1 (eﬁAVb(”>Ab intervals sum up to an increasingly accurate estimate of the

A total time. What is a “long” time depends on the statistical
¢ kp>l (|valSa(N))a, properties of the time-dependent boost faceit Vol' (0] |f
escape from a state requires a number of MD steps that is
i 5 Mot QBAV,[F(t)] large enough to obtain a high-quality estimate of the average
Nt -1 boost factor, then the accuracy of individual escape-time pre-
© Nesd (Nl typ) dictions will be quite good. This is the case for the examples

presented below. In contrast, an aggressive choice for

1 % At BV 11 AVy(r) may stimulate escape in a small number of steps. In
T Neseisy T MP D€ (11) this case, the predicted time for a single escape is very noisy,

so the time scale becomes meaningful only after many tran-
whereAt,p is the integration time stey,, is the total num-  sitions. In either case, the escape time estimates will be un-
ber of MD steps, anti indicates the time at thieh MD step.  biased, and the error in a particular escape time will be un-
Utilizing the equivalence between an ensemble average andgarrelated with the time error of future escapes from other
time average, the numerator has been evaluated using,the states, even if each state is different. By the central limit
equal-time snapshots. The denominator, which is the TStheorem, then, the relative error in the estimate of the total
escape rate fromd,, has been expressed as the number ofime will decrease as V2,
TST surface crossing®r, in this case, reflectiongivided If AVy(r) is chosen too aggressively, it may violate the
by the total trajectory time. Our goal is not actually to cal- requirements stated above. For exampl¥/,(r) might con-
culateresc, but rather to discover the time scale of the biasedine the trajectory to a subset of the b|nd|ng site, so that not
dynamics. Inspection of the last line of E{.1) suggests a all escape paths can be found readily. In an extreme case, a
simple definition for the time evolved per MD step on the trajectory entering a new state might encounter a repulsive
biased potential. By requiring that the total time evolved,bias potential that causes it to quickly exit through the same
divided by the number of attempted escapes, equal the avefegion of the TST boundary without sampling the rest of the
age escape time, we arrive at state. In these cases, the calculation will lose accuracy, be-
cause artificial correlations are introduced into the successive
Atbi:AtMDeBAvb[r(t')]’ (12 TST crossing events. In general, though, there is nothing
wrong with a bias potential that raises the energy of parts of
the state above the energy of the saddle points, provided that
it does not block the ergodic sampling of the entire state.
Ntot Assuming thatAV(r) can be determined purely from
th=> Aty (13)  local properties ofV(r), an important feature of this
' hyper-MD approach is that it has the “efficiency” of a
While this definition is meaningless on shdite., vibra-  direct-MD simulation. When the system makes a transition

tional) time scales, it nonetheless allows us to advance thE0m stateA to an adjacent state, it does so with the correct
clock at each MD step. The amount the clock is advancedrobability relative to the other possible transitions out of
depends on the strength of the bias at the current position tateA, even though the trajectory never “sees” the other

where the total“boosted”) time that the system has evolved
is estimated as

the trajectory. Where the boost potential is zext,= At,,,,  POssible escape patfisnever sees the other paths because it
as for normal MD. At long time scales, by construction, the€Xits stateA through the first escape path it findsn con-
time on this clock converges on the correct re$uf. ). trast, the usual approach for accelerating infrequent events
involves first finding(or knowing all the possible escape
i th | paths and the rate constant associated with each one, and
'm oxact L (14 then picking one escape route that is consistent with the rela-

Ntot— >

tive probabilities. This perspective underpins any kinetic
because from Eq11), which is exact for an infinitely long Monte Carlo simulation and is implicit in a master equation
trajectory,t, = 7h.Nesc: We define the average boost factor approach. If all the escape paths and associated rate constants
J. Chem. Phys., Vol. 106, No. 11, 15 March 1997
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can be estimated quickly for the current state of the system, For the N-dimensional system, the general, nonlocal
this rate-based approach is unquestionably superior to thaefinition of the TST boundary is based on the consequence
hyper-MD method presented in this paper. However, if theof a steepest-descent minimization. The basin belonging to
system resides in a state for which the escape paths are ustateA is defined by the set of points from which a steepest
known, and are perhaps complicated, then one must undedescent path leads to the minimum of stAteThis basin is
take a search to find each saddle point. Given that the nunmbounded by a R-1-dimensional hypersurface, the TST sur-
ber of saddle points bounding a state will generally beface, just outside of which all steepest descent paths lead to
proportional toN, and that finding one saddle point to a states other thar\. Near any first-order saddle point, Eq.
certain accuracy requires computational work scalinfiads  (16) gives a good approximation to this true TST dividing
the overall scaling of this rate-based approach becdwies  surface. Further from the saddle, the approximation can
worse. An attempt to speed up this process by computingreak dowrt* For example,H may have more than one
approximate barrier heights will give rise to exponential er-negative eigenvalue, and the reaction coordinate may not
rors that do not necessarily cancel out, in contrast to theorrespond to the lowest one. Also, Efj6) can be satisfied
time-based hyper-MD. in regions internal to a state that have nothing to do with a
state-to-state boundary. And for some parts of the TST sur-
face, the Hessian may have negative eigenvalues. These

B. Defining the bias potential considerations imply that it is probably impossible to find a
The key to implementing the hyper-MD method is rigorous, local definition for the TST dividing surface.
choosing a computationally tractable definition #%,(r). However, our task is to define a form fa/,(r) that is

As stated above, the requirements &N, (r) are that it be zero at the TST surface; this does not require knowing the
zero at all the dividing surfaces, and that it not introduce neveXxact position of the TST surface. Moreover, if we can
subwells with escape times that rival the true escape timgho0seAVy,(r) such that it is zero at the most important parts
from the well. To make the method useful as a general tool0f the dividing surfacdi.e., near the saddle pointsve will
the definition should not depend on advanced knowledge dhave a useful approximation. If a fractioiye of TST-
the states of the system, nor require a search for saddRfossing trajectories in the true ensemble are blocked from
points. There may be many ways to define such a functiongrossing in the biased-potential system due\i,(r) being
the approach we take is based on local properties of theonzero along some portion of the dividing surface, the es-
potential via ther-dependent gradient vectag{g,=[4V(r)/  cape rate will be reduced by a factor no worse than
dx;]}, and Hessian matrixi {H;; =[?V(r)! Jx;dx;], where (1—fpiock)- When the exact posi'gion of the dividing surfg'ce is
x; andx; are components of theNBdimensional vector}. ~ known (e.g., for test systemsthis effect can be quantified;
In essence, the relevant properties of the potential can b@ @ TST-obeying system, the fraction of trajectories that will
described using the usual two-dimensional analogy of th@roceed unhindered is the ratio of partition functions for the
hiker in the mountains. Each valley is a state. To get to thiased and unbiased potentials, evaluated over the dividing
next valley the hiker goes over a mountain pass. The maxisurface,
mum along a minimum-energy pathway to the next state is a 1 foou= (€ V(Y (17)
first-order saddle point, i.elg/=0 andH has exactly one ¢ A
negative eigenvalue. Considering all the possible ways thate will take the view that a definition foAV(r) can be
the hiker can leave the valley leads one to define the TSTound for whichf .. is small, giving a good approximation
boundary as the ridge line surrounding this valley. This ridgeto the exact long-time dynamics. Candidate definitions for
line, which includes the first-order saddles, can be characteaV,(r) can be tested on systems with known dynamical
ized as the set of points at which the lowest eigenvélye  properties. The examples presented below confirm that use-
of the Hessian is negative, and that have zero derivativéul definitions for AV, (r) exist, leading to substantial boost
along the direction of the lowest eigenvect@); i.e., these factors with negligible errors.

points satisfy A possible definition folV,(r) suggested by Eq16) is
CIg=0 and €,<0. (16) the following:
AVy(r)=ab(e;)(€e)*+c(Cy-9)%, (18

This definition for the TST surface has been proposed by
Sevick, Bell, and Theodoroif,who give a good discussion wherea andc are tunable parameters. The first term turns on
of its merits and limitations. At a first-order saddle point, Eq.smoothly as the lowest eigenvalue ldf becomes positive,
(16) is ideal, defining the so-called saddle plane, the hyperand is zero wherever the lowest eigenvalue is negative, due
plane orthogonal to the reaction coordinate at that pointto the step functiorthered is the standard step function, not
Taking the saddle plane as the global TST surface for a twoto be confused witl®,). The second term contributes wher-
state system underpins a full harmonic TST treatment suchver the slope along the lowest eigenvector is nonzero, re-
as the Vineyard methotf, and is the planar surface that gardless of the sign of the eigenvalue.

minimizes the recrossing everifsAway from a first-order To perform MD requires the derivative dfV,(r) with
saddle, where Eq16) describes a surface that deviates fromrespect to each atom position. By analogy to the Hellman-
the saddle plane, the situation is more complicated, espd~eynman forces, differentiating the first term in Ef8) in
cially in many dimensions. regions of positives; gives
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J
(9Xi

0.5 ——

0 oH
[ael]=2a o [CIHC,]=2aC! — Ct: (19
1 I

where gH/dx; is a matrix of third-derivatives o¥/(r). Dif-
ferentiation of the second term in E@.8) is not so straight- >
forward, but a numerical approach can be designed that gives
a good approximation, as described elsewf&rghe ex-
amples presented below utilize variations on the first term
only.

A brief discussion of computational scaling is appropri-
ate here. While in general, the work required to constHict
scales adN?, for a finite-ranged interatomic potentil be-
comes sparse as the system size increases beyond the cutoff
range, so the actual scaling tends towakt$or large sys-
tems. Similarly, performing a full diagonalization &f re-
quiresN® work, but iterative techniques such as the Lanczos
method’ can be used to find the lowest eigenvector with
work scaling asN.

Ill. APPLICATIONS

A. Dynamics in a model potential FIG. 2. Model potential | given by Eq20) with d,=4, d,=1, d3=0. Two
X periods are shown. The highest contour i&/&t2.0 with a contour spac-

We first test and demonstrate the hyper-MD method foiing of 0.25.(a) V(x,y). (b) V(x,y) + AV(x,y), whereAV,, is given by Eq.
two model potentials on which exact dynamical results car{3?-
be obtained for comparison. Although we know exactly
where the minima and saddles are, we choose a bias potential
that does not take advantage of this knowledge. We show o
that one can obtain the correct long-time dynamics with sub- f Ai(DA(t+At)dt=2amkgTS(AL) §;; . (22
stantial boost factors. *°°

We study a two-dimensional model potential of the formon time scales short relative @ %, the Langevin system

d, obeys Newtonian dynamics, while on longer time scales the
V(x,y)=cod2mx)(1+dy)+ 7277}/2 friction and stochastic driving force balance to give proper
exploration of the canonical phase space at the chosen tem-
+d; cog2mx/d,). (20 perature. Proper integration of E(1) is critical to obtain

good stability and correct thermal properties with a reason-
able time step. We used the Langevin—Verlet integration
procedure described by Allen and Tildesf@yAll calcula-
tions presented here employad=1 and time steps of
Atyp=0.02 or 0.01. To obtain dynamical behavior represen-

tive of a realistic many-dimensional process such as sur-
ace or bulk diffusion, a value ofr=0.5 was choseff A
higher value ofa increases the number of friction-induced
(i.e., Kramer8}) recrossing events, in which the system is
jostled back across the dividing surface before it clears the
saddle region, while lower values af result in a larger
hnumber of multiple-jump events, and bounce-back recrossing
vents??

The one-dimensional diffusion constant is obtained from
direct MD via the time evolution of the mean-squared dis-
placement,

This potential is periodic in th& direction and harmonic in
they direction. Whernd,;=d;=0, thex period is unity, with
equivalent minima(V=—1) at x=k+ 3, y=0, and saddles
(V=1) atx=k, y=0, for all integer values ok. A positive
value for the coupling coefficiert; lowers the energy of the
saddles and minima by the same amount and shifts th
minima in the+y direction and the saddles in they direc-
tions so that the diffusion path is not a straight linifThis
reduces the number of multiple-jump events. We initially
choosed;=4, d,=1, andd;=0, defining “model potential
[,” which is shown in Fig. Za) and summarized in Table I.

For this low-dimensional system, coupling to a heat bat
is essential for proper sampling from the canonical ensembl€
We accomplish this via the Langevin equatiirFor each
configurational degree of freedomw (x;=x or y in this
case,

1d
. . i S — 2
= max it T (21) D=3 Gt (X =xOI), @3
where « is the friction coupling rate and;(t) is the delta- which gives a value 0D =4.5+0.4x10"° at kyT=0.2. At
correlated stochastic force which has zero mean and is rdewer temperatures, where direct MD becomes more difficult

lated toa through the fluctuation-dissipation theorem, (and ultimately unfeasibje the diffusion constant can be
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Arthur F. Voter: Simulation of infrequent events 4671

TABLE |. Coordinates, energy, and Hessian eigenvaligss,) at the stationary points for the two model
potentials based on EQO). k is any integer, and the direction of the normal mode is given in parentheses after

each eigenvalue. Numbering of the three minima for model potential Il corresponds to Fig. 6.

X y \% € €

Model potential I(d;=4, d,=1, d3=0)

minimum k+0.5 0.1013 —-1.203 39.48y) 55.48()
saddle k —0.1013 0.797 —23.48(K) 39.48()
Model potential II(d,=4, d,=1, d3=—0.75,d,=3)

minimum 1 %+0.476 0.100 —-1.594 38.68¢) 57.26()
saddle -2 3k+1.053 —0.096 1.209 —26.00() 40.51¢)
minimum 2 %+1.500 0.101 —0.453 39.48y) 52.19()
saddle 2-3 3k+1.947 —0.096 1.209 —26.00() 40.51()
minimum 3 *+2.524 0.100 —-1.594 38.68() 57.26()
saddle 3-1 3k+3.000 —-0.101 0.047 —20.19) 39.48(y)

computed using a combination of TST and the dynamical

ke =k ST g(i—]),

corrections method formulated for multistate syst&ms.
For the TST calculations, the=0 line defines the divid- where the dynamical correction factor for the escape rate

ing surface. Because the reduced mass of the reaction codrem statei is given by

dinate does not vary over the dividing surface, the momen-

tum coordinates in Eq.l) can be integrated analytically to

give the mean one-dimensional speed, leaving only a

configuration-space average to be computed,

TST 12 Here vy, is the phase of trajectory, which depends on

= (2kgT/ M) " 3a(r))a- 24 whether the trajectory is initially exitingy,=+1) or enter-

This average is evaluated using a MD implementation of théng (y,=—1) statei. With perfect samplindor, in this case,
displacement-vector methéa an importance-sampling making use of symmetjythere is an equal number of tra-
scheme ideally suited to this type of problem. These resultjectories with each phase. The state-occupation function,
are shown in column 2 of Table Il. AgT=0.2, the TST  ©,(1,t), defined as in Eq(3), acts as a filter to retain only
rate for escape in both directio$.03+0.01x10™%) agrees those trajectories that are in stajeat time t. In the
with the number of TST surface crossings per time from theinfrequent-event regime, the rate constants from(28). are
direct-MD simulation(1.01+0.04<10™%), as it should. exact.

Having chosen the TST dividing surface, the classically ~ The diffusion constant can then be determined from the
exact rate constants for the possible elementary eventserage squared jump length resulting from all the possible
(single-jump, double jump, triple jump, elcare obtained jumps (single-, double-,.).out of a representative state
using the dynamical corrections formalism, via trajectories=0),
initiated at the same dividing surface. The initial conditions
for these saddle trajectories are sampled from a canonical
ensemble within the TST plan@ line in this casg and
assigned a Maxwellian-flux momentum distribution
[prob(p,) = |p,|exp(—BpZ2m)] perpendicular to the TST wherel; is the distance between sites 0 ando;=|j| for
surface at=0. After these trajectories have thermalized, i.e.,this model potential This expression foD, evaluated using
after a timet exceeding the correlation time of the system, half-trajectories, is exact even if the system is not in the
the elementary rate constant for a direct transition from statefrequent-event reginfé (i.e., even when the individual rate
i to statej is computed from constants are not vaffg).

Ntra]

2 70,(1,1). (26)

fali—=1) =1

trJ

=3 ; ol (27)

TABLE Il. TST and dynamical corrections results for model potential I. The TST rates are summed over both
escape directions; each dynamical correction fadtgir— =+ j), is summed over both left and rigidong jump
eventg[i.e., f4(0— *j)="f4(0—]) + f4(0— —j)]. Eachf4 was computed from TQrajectories using Eq26)

with t=10. Numbers in parentheses indicate one-standard-deviation uncertainty in the last digit.

KeT KTST fq(0—+1) fq(0—+2) f4(0—+3) D/DTST
0.20 1.031)x107* 0.771 0.024 0.002 0.88)

0.15 3.724)x10°8 0.855 0.009 0.0 0.897)
0.10 4.838)x107° 0.917 0.002 0.001 0.928
0.09 5.1210)x10™%© 0.928 0.001 0.0 0.930)
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4672 Arthur F. Voter: Simulation of infrequent events

The dynamical correction factors obtained for this poten- L e e I B B B B e
tial are shown in Table I, along with the overall diffusion L i
correction factorD/D ST, where the TST diffusion constant r ]
is defined by assuming uncorrelated single hops at the TST 0.5~ ]
rate, L ]
DTST= 3k >M15: (28 ~ ool -
This become® ™ST=k"S7/2 in the present case. As the tem- E - .
perature is lowered, the general trend is towards fewer mul- % - ]
tiple jump events and fewer bounce-back recrossing events, >~ ~%3[ ]
so that TST becomes an increasingly good approximation. At B ]
very low temperatured)/D ST levels off at a value dictated - -
by the friction-induced recrossings, which are temperature -or .
independent. For example, atkgT=0.01, D/D'ST C ]
=f4(0—=x1)=0.951. This is in excellent agreement with the T T T T
prediction from a one-dimensional Kramers modgl -1.0 ~0.5 0.0 0.5 1.0
=0.950 based simply on the ratio of the friction coefficient X
to the angular frequency of the unstable mode at the s¥ddle
(a/wc=0.103. F_I_G. 3. Minimum-energy pathpotentia}l m_inim_um alongy for eachx po--
sition) for model potential I. The solid line i% and the dashed line is

It is also instructive to consider the full-harmonic ap-

- . ' V+AV,.
proximation to TST, using the Vineyard expresstdn,

Hndimvmin
i I
kHTST: npath W exq - Ea/kBT)v (29)
i 1
) ' ) ) ] min energy pathway for this potenti@/ minimized with respect
whereE, is the static barrier heighty;™} are thengm NOT- 4, v for each fixed value ok) for both the unbiased and

: Y oa -
nmoar:imgd;;rfqlrj]i?:wlzls ritot(;]: ?énml:]{z:asc};r?h??;%lel oi t%iased form. It is easy to see that, as desired, this bias poten-
ginary g PONal does not affect the potential in the immediate vicinity of

(vi=€"?12), Npapis the number of escape patt® hers, _ ) _
and ng;, is the number of dimension& herd. Assuming the saddle point. However, comparison of Fig®) 2and Zb)

uncorrelated jumps, the full harmonic approximation to theindicates that the TST dividing surfa¢eefined as thec=0
diffusion constant is thus line) is corrupted in the region negr=—0.3 This is an ex-
DHTST_ 1, HTST 2 (30 ample of the possibility discussed in Sec. Il B, in which a
2 ' fraction fy, Of reactive trajectories will be unable to cross
In the present model,=1, E,=2.0 and the preexponential the dividing surface when the bias is turned on. Evaluation of
frequency is %1.185. Eq. (17) from a simulation restricted to the TST surface

We now examine the diffusion using hyper-MD. For gives 1f0q=0.998+0.001 at kgT=0.2, and *fy o

simplicity, we define a bias potential that is nonzero Onlyz1.0000 atkkgT=0.1, so the fraction of hindered trajectories
where the lowest Hessian eigenvalue is positive, using a

o . ) . IS negligible in this case.
f f the f E . . , .
modified version of the first term in E¢18), The hyper-MD results are summarized in the first five

columns of Table Ill. We first consider the prediction of the
TST escape rate. The derivation of H§) guarantees that

Herez,,,, limits the maximum size oAV, , in turn control- the TST crossing rate will be correct in the hyperdynamics,
ling the size of the exponential in Eq12). Values of Provided that the sampling is complete afjg=0. Com-
a=0.004 andz,,,,=1.5 were chosen with very little experi- paring the crossing rate from the hyper-MD ri@olumn four
mentation. The biased potential is shown as a contour plot ifn Table Ill) with the TST rates in Table |l shows agreement
Fig. 2(b). Figure 3 shows a projection of the minimum- within statistical uncertainty at all temperatures. This indi-

AVp(X,y)= . z=ab(e;)e. (32

1+ 270

TABLE Ill. Hyper-MD runs, showing raw total MD run timét,,,), observed average boost factor, dividing-surface crossing(mgtg{t,), and diffusion
constant from the slope of the mean-square displace(@eME®MP). Also shown for comparison are values@fobtained from full TST(D™ST), and TST
plus dynamical correctiond® TST%"®) hased on the data in Table 1. Numbers in parentheses indicate one-standard-deviation uncertainty in the last digit.

kBT tMD boost ncrosétb Dhyper—MD DTST DTST+dyncor
0.20 2.5¢10° 46.7 1.083)x10°* 5.1(4)x107° 5.155)x10°° 4.537)x10°°
0.15 5.0<10° 200.1 3.787)x10°® 1.8(1)x10°8 1.862)x10°6 1.672)x10°®
0.10 1.0<10° 3435, 4.81)x107° 2.4(1)x107° 2.41(4)x107° 2.244)x107°
0.09 1.0<10° 8682. 5.82)x10°1° 2.54)x10710 2.565)x1071° 2.345)x10°1°
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FIG. 4. Arrhenius plot of the diffusion coefficients for model potential I,

showing a comparison @"e*MP (0), D"vPerVD (@), andDTSTH Yooy +), FIG. 5. Evolution of the boosted time, shown for a small segment of the

The symbols are sized for clarity. The line is the full harmonic TST approxi- hyper-MD run on model potential | &zT=0.1. The slope of the least-

mation[Egs.(29 and(30)], and is indistinguishable from a least-square line squares fit to the point&olid line) gives an estimate of the boost for this

through theD™T points (not shown. time interval, already in good agreement with the boost averaged over the
whole run(shown by the slope of the dashed line

cates that the hyper-MD simulations have been run long
enough to achieve an accurate estimate of the total boosted Figure 5 shows the nonlinear evolution of the boosted
time, t,. The small subwells introduced by the bias potentialtime atkgT=0.1. As the system passes through regions of
due to its rapid onset as grows(atx=-0.68,y=0.0, and largeAV,, t, increases rapidly; this behavior alternates with
x=-0.32,y=0) apparently cause no problem. periods of almost no progress as the system explores regions

We now focus orD, a physical observable independent where AV,=0. In this case, relatively long low-boost inter-
of the dividing surface, representative of the type of propertyals occur while the system is caught in the one of the local
that might be sought in a real application. At all tempera-minima created by the bias potential. The interval shown is a
tures, there is good agreemefutithin the error barsbe-  small fraction(10°) of the total simulation time, although a
tween D™PETMD and DTST. At the highest temperature reasonable estimate of the average boost ratio is already
(k,T=0.2), DPeMD 5 139 higher than the exact diffu- forming.
sion constanD TS’ probably due to the disruption of We now turn to model potential II, which is summarized
the recrossing events byV, . This agreement improves as in Table | and shown in Fig. 6. This potential has two types
the temperature is lowered. We conclude that the correlatedf binding sites; for one of the binding sites the two escape
dynamical activity causes no unexpected errodfPeMP, paths have very different barriers. The dynamical behavior of
The diffusion constants are plotted in Arrhenius form in Fig.this system is characterized by two time scales, as can be
4, along with a line representing the full-harmonic predictionseen in the time evolution of the mean-squared displacement
from Egs.(29) and(30), which is seen to be a good approxi- in Fig. 7. The initial, large slope is due to the rapid jumps
mation. between the two binding sitdsninima 1 and 3 in Table)l

As the temperature is lowered, the average boost factaseparated by a low barrier of 1.641. To execute long-range
increases due to its exponential dependence on inverse temifusion requires surmounting a much larger bar(&803
perature, a general characteristic of this method. At the lowto get to the next low-energy, double-well set, corresponding
est temperature studied heglggT=0.09, the boost factor is to an effective jump length of 3.
8.68x10°. For this potential, computing the higher deriva- Figure 8 shows an Arrhenius plot of the diffusion con-
tives requires a factor of 3 times more computational workstants from hyper-MD simulations. AtkgT=0.2 and
for each hyper-MD step than for a direct-MD step, so the nekgT=0.25, there is excellent agreement with the direct-MD
computational gain is 2X910°. Even at this high boost simulations. At kgT=0.3, there are substantially more
value, the simulation is stable. A comparable direct-MDbounce-back recrossings in the direct MD than in the hyper-
simulation at this temperature would be impractical, requir-MD, reducingD.
ing 4.3x10 MD steps. In general, very rough, terms, if the For simplicity, we estimate the correct diffusion constant
bias potential reduces the well depth by a factogdfyj~2  at the lower temperatures using harmonic TST within an
here, then a hyper-MD simulation will be feasible at a tem- uncorrelated-jump model. Because there is more than one
peratureq times lower than for direct MD, not counting the type of binding site, no simple, closed-form expression such
extra computational work of computinV(r). as Eq.(30) exists. Instead, kinetic Monte Carlo is employed,
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FIG. 6. Minimum-energy patfipotential minimum alongy for eachx po-
sition) for model potential Il, showing two periods. The dashed line is
V+AV,.

FIG. 8. Arrhenius plot of diffusion coefficients for model potential II, show-
ing direct MD (O) and hyper-MD(®). The line is a least-squares fit to the
Vineyard-based kinetic Monte Carlo resultee points are omitted for clar-
ity).

using the six Vineyard rats as the entries in the rate
catalog'® Over the temperature range shown, the kinetic(2.803 rather than 2)@ictated the long-time dynamics. This
Monte Carlo points fall on a straight line with slope2.77 illustrates the point that for a system with multiple barrier
and intercept 0.88. The long-time dynamics picture describetieights, the available boost is controlled by the lowest bar-
above, in which escape over the highest barrier leads to a hajer in the system. This can be seen graphically in Fig. 6. If
length of three, predicts a slope 6f2.803 and intercept of the bias potential is increased until it represents a significant
0.973 (i.e., the log of the preexponential factoin good fraction (e.g., more than halfof the height of the larger
agreement. The hyper-MD diffusion constants are seen tbarrier, the lower barrier at=3 becomes more of a local
fall on this line. At the lowest temperatufkgT=0.129, the  minimum than a barrier. In such a situation, the TST as-
average boost factor is 358. sumption(that there are no recrossing everttseaks down,
Although the boost factors for model potential Il were as the system simply vibrates back and forth acrosx th@
similar to those observed for model potential | at a givendividing surface. This situation can be prevented by choosing
temperature, much longer runs were required to obtain goothe bias potential according to the height of the lowest bar-
statistics for the diffusion constant, because a higher barriatier. (In a many-dimensional system, allowing the bias po-
tential to go higher than a certain barrier need not cause any
problems, provided there are paths available for the system
15 to circumnavigate the peak M+ AV, .) On the other hand,
if one knows in advance that transitions over the lowest bar-
rier are unimportant to the long-time dynamical properties of
interest(a judgement that should be made with some xare
choosing an aggressive bias potential that leads to correlated

1.0 transitions over the lowest barrier may offer a way to achieve
of more boost.
g B. Ni adatom diffusion on a Ni(100) terrace
v 0.5 To demonstrate the method in a more realistic applica-

- - tion, we now examine the diffusive motion of a Ni adatom
= - on a Ni(100 terrace aff=500 K using an embedded atom
- - method(EAM) interatomic potential. As shown in Fig. 9, the
- . narrow terrace confines the motion of the adatom to hops in
00 — '0!5' ! '1!0' ! '1!5' Y the +x or —x directions(no constraint prohibits hops off the
t (10 terrace in they direction other than a much higher barjyier
Nine atoms(the adatom and the top layer of the subsirate
FIG. 7. Mean-squared displacement from direct-MD rurkgf=0.2 on  OUt of 37 total are allowed to move in the simulation. This
model potential II. system is designed to give realistic motion of a diffusing
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I I I I I I at the boundary between states 0 an@33 in state 1, 46 in
state 0, 1 in state-1) were used as described abbue

— compute dynamical correction factors f§f(0—=*=1) =0.91
+0.01 andf 4(0—*2)=0.0=0.001. The overall rate constant
- is thus 4.6-0.1x10° s™ %, corresponding to an escape time of
2.18+0.05 us.

_ Using the Vineyard approach, we obtain a static barrier
of 0.744 eV and a pre-exponential factor of 8<10'? s™*

- [Eg. (29) with ngi,=3N=27, andn,;=2]. At T=500 K,
kHTST=5.14x10° s~ *. The full harmonic treatment is thus an
excellent approximation to the exact TST value and is within
7% of the full dynamical rate constat.

We now turn to the hyper-MD simulation. As in the last
section, we use a bias potential based on the first term in Eq.
| l | | | | (18). The bias term is nonzero whenewgrexceeds a base
value, €y,sa 1.€.,

— 2
FIG. 9. Surface-normal view of Ni adatom on single-channglLOl) ter- Avb(r) =ad( €1 Ebasg(el fbase) ' (32)
race. One period(4 binding s?te}sis shown, with tick markZAapart: The  Choosing a negative value fod e increases the overall
9 shadgd atomgdatom and first layer of substratre free to move in the boost, at the risk of having a nonzetd/,,(r) somewhere on
simulaton. the dividing surface. Knowinge,;=—1.57 eV/R at the
saddle point in this system, we chogg.=—1.4 eV/A? and
adatom with a minimal number of degrees of freedom so thaa=0.05 A’/eV. Using Eq.(17) in a simulation restricted to
direct construction and diagonalization of the Hesggoal-  the saddle plane gave-T,,=0.96+0.01. For this demon-
ing asN®) is not computationally prohibitive. As mentioned stration calculation, we have made use of our knowledge of
above, more sophisticated approaches exist for reducing thtke system to increase the boost. For comparison, using
scaling toN. €rasc=0 eV/IA? and a=0.20 A'eV gives a boost factor of
The simulation cell is periodic it and has free bound- 40x5, about ten times lower than the boost factor achieved
aries iny and z. The Ni lattice is expanded to the here. In real applications, where the saddle points are not
guasiharmonic-predicted lattice constanfat500 K (3.520 predetermined, a more conservative approach would be
%x1.0084=3.550 A). As for the model potentials, a Langevin safer, to prevent accidentally blocking a saddle point with a
procedure is used to thermostat the system, witHower imaginary frequency. For those cases, a more sophis-
a=2.0x10'2 s and a time step oﬂtMD=3.O><;LO’15 s.  ticated form forAV,(r), utilizing both the eigenvalue and the
(For comparison, the normal mode frequendieS"} range  eigenvector-projected gradient, can be used to increase the
from 3.0x102 s t0 9.2x10'% s 1) boost® This is especially important for larger systems, be-
The EAM potential is a semiempirical foffhthat aug-  cause the fraction of configuration space with all positive
ments a pair potential with a local, density-dependent termHessian eigenvalues decreases as the number of degrees of
As discussed elsewhet® this form of potential has had freedom increases.
considerable success in describing fcc transition metals. The Calculation of third derivatives of the EAM potential,
Ni potential we use hePéwas fit to the bulk lattice constant, apparently required by E¢19), can be avoided. The second
cohesive energy, elastic constants, and unrelaxed vacandgrivative of the potential along an arbitrary directisncan
formation energy, and the bond length and bond energy dbe approximated numerically by
the gas-phase diatomic molecule. This potential predicts sur-
facegdifftrj)sion barriers in very good agrepement wﬁh field ion V(1) = V(r+ 99 +V(r—7s) —2V(r) (33)
microscope experiments for (00) and a number of other J 'S ’

H 2
Ni surfac_es‘s. i i where 7 is a small number. After diagonalizing the Hessian,
We first discuss estimates of the exact rate constant fof,o ayact lowest eigenvalue,) is replaced by its approxi-

diffu§i\_/§ motion on this terrace. A[:_SOO K, direct MD is 1 4tion via Eq.(33) (&™), by using the lowest eigenvector
prohibitive, so we compute the classically exact rate constantg o Differentiating Eq.(33) gives

using TST augmented by dynamical corrections, as we did

for model potential I. Taking the saddle plaf@N—1=26 €M™ 9 [aPV(r)

dimension$ as the TST surface, the TST rate constant was o or | o

computed from Eq.(24) using the displacement-vector =Gy

method® giving k™'=5.04+0.10x10° s™* (total escape g(r+ 7Cy)+g(r— nCq) —29(r)

rate summed over both directigndDynamical-corrections = 7 ) (34)

trajectories, initiated at this same dividing surface, were 7
evolved for a time of 2.0 ps, exceeding the correlation timean approximation that depends only on the gradien¥ aft
The final resting position of these 1000 trajectories initiatedthree points.
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4676 Arthur F. Voter: Simulation of infrequent events

TST dividing surface away from the potential energy
saddle>* nor for liquids, which often have negative eigenval-
ues irrelevant to the reaction coordinate of interest. This
hyper-MD method works in continuous space, like direct
MD, rather than mapping atom positions onto a lattice. Con-
sequently, it does not suffer the danger of lattice-based ki-
netic Monte Carlo methods, in which states that are not eas-

8T T T mation and that, indeed, highly accurate accelerated dynam-
u ics result. This simple form based on the lowest Hessian
i eigenvalue probably would not be sufficient for gas-phase
- systems with centrifugal barriers that move the optimum
6 —

IIIIIIIIIllIII

2 ily mapped onto a latticee.g., if they have disordered
i characterare left out of the simulation, leading to erroneous
L dynamics.(On the other hand, if all the states can be enu-
ol b merated, and the rates between them calculated, kinetic
0 5 10 15 20 Monte Carlo is substantially faster than hyper-MD.

t, (usec) For the model potentials investigated, boost factors
greater than 10were achieved, and the known correlated
FIG. 10. Ni adatonx position vs boosted time for diffusion on the(00) dynamical activity(e.g., bounce-back recrossings, and mul-
terrace shown in Fig. 9, at=500 K. tiple jumps had a minor or negligible impact on the quality
of the predicted diffusion constants.
Applying the method to a more realistic process, the

. . . diffusion of a Ni adatom on a narrow {00 terrace using
h hyper-MD | for x50’ : , . .
the adatom during a hyper simulation for x50 steps an EAM interatomic potential, a boost factor of 434 was

Th iti . The ti - . L . .
e position was stored every 500 steps e timp be obtained, giving a total run time of almost 26s. For this

tween points in the figure thus variésg., causing the gap at . )
t,=18.6 us) due to fluctuations in the instantaneous boostdemonstratlon caseéVy,(r) was constructed with some ad-

factor, which is 4345 on average. Also, any brief excur- vanced knowledge of the saddle point properties, but more

sions that quickly recrossef@vithin 1.5 ps of MD time spphlstlcated forms for .Avb(r) .[e.g., utilizing the
would not show up in this plot, and were not monitored, Atelgenvector-prOJected gradient as in the second term of Eq.

14.41 s, there are two independent jumps in the same di§18)] should offer comparable or even greater boosts with

rection separated by 73.5 ps of MD tinfiee., this is not a complete generality.

double jump. From the 11 jumps that occurred, the escapemo;uftgrreS}e\r/sk;‘:n”;?t .?]f EEZ Toer?](;df::&o\l;s(f)ro;‘glr;?f,__thh
time is estimated as.=1.8+0.5 us, in statistical agree- improv ! b :

ment with the exact value. Averaging with a second, equiva-CIenCy of the computational implementation. For example,

lent simulation, which yielded 7 jumps in 19.59&, gives the methodﬂ:rjaytset pa(rjg#gllzlflple evenl ];\%) smalll st_ystem
Tesc=2.2 uS. This 20us simulation took only a few days of sizes, something that IS diflicult In norma simuations.

CPU time on a modern scalar workstation. Each integratiorFXtenS'cmS to quantum dynamlcs may also be possible, via
step took~6 times more work than in a direct-MD simula- the Feynman-path-centroid formulation of quantum transi-

; 5
tion, for a net computational gain of 4342 over direct tion state theory:
MD.

Figure 10 shows the time evolution of thkeposition of
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